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Abstract

A 2D beam model for an open-cell metal foam is used to simulate elastic and plastic defor-

mation of 2D aluminum foams. The results are analysed with the help of strain maps which can

visualize the localization of strain in the cellular network. A converged sample size is deter-

mined for tension and compression.

Comparison of the solid material parameters with the corresponding foam parameters varying

over relative density gives rise to scaling relations. Scaling for the Young’s modulus and the

plastic collapse strength is confirmed for a unit cell with a bilinear elastic-plastic material. A

scaling relation for the plastic modulus of a unit cell with the same material is proposed and

discussed. Similar relationships are studied for a Voronoi network with a bilinear material and

a material which hardens by a power law. Comparison of the hardening exponent of the foam

with the hardening exponent of the solid material showed that the overall hardening behaviour

consists of a material contribution due to the strain hardening behaviour of the solid material as

well as a geometric contribution due to the reorientation of the cell walls.

The influence of the heat treatments T6-strenthening and annealing is simulated using solid

material parameters obtained from experimental results. A preliminary study for failure is per-

formed monitoring the evolution of the internal stresses in the beam elements.
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1
Introduction

Metal foams have various applications, ranging from light weight sandwich constructions used for

example in airplanes to heat exchangers used for example in cooling installations. Light weight

properties and a large surface to volume ratio make these materials excellent for these applications.

However, in both cases the foam will be subjected to extreme conditions of loading and thermal

shocks. To design components which can withstand these conditions, it is needed to understand the

mechanical properties of the foam [4].

In this thesis the deformation of foams is studied making use of finite element calculations. This

work is part of a collaborative effort with the Material Science group, aimed at understanding the

fracture of foams using a combination of modeling and experiments.

1.1 Experiments

Experiments show that a foam sample in compression will deform (after a initial linear elastic

reponse) in a ductile manner. Due to plastic hinging at strut junctions struts will orient perpendicular

to the loading direction and bands of collapsed cells will occur. These bands will absorb the majority

of the deformation partially unloading the remainder of the sample. At large strains the struts

will start to touch each other and the foam will start to harden again. This last stage is called

densification.

In tension the struts will align parallel to the loading direction and also elongate in this direction.

Fracture in the struts is responsible for the final failure. In comparison to compression the strains

up to failure are small [1],[2].

To improve certain properties of the foam one can apply different heat treatments to the foam.

By heating the foam to different temperatures and cooling it down at different rates, different cell

wall microstructures are formed. A change in cell wall microstructure can significantly change the

mechanical properties of the foam.

1



1.2. SIMULATIONS

Two different sorts of heat treatments and their influence on the microstructure and mechanical

properties are explained in detail in section 6.1. More details on the specification of T6-strengthened

and annealed materials and their influence on foam properties are treated in chapter 6.

1.2 Simulations

In this Master’s Thesis foams are represented by Voronoi tessellations which form a 2D network

of Euler-Bernoulli beams after discretizing all the struts. During a systematic study, linear and

power law strain hardening for the solid material is used. The model is capable of capturing gradual

plastification of the strut cross-section. A detailed description of this model can be found in chapter

2.

A regular hexagonal honeycomb structure is analyzed through a representative ‘unit cell’. For this

unit cell scaling relations between material and foam properties were analysed. These relations in-

clude the scaling of Young’s modulus, the plastic collapse strength and the plastic modulus. Similar

relations have been performed for foams. The hardening exponent of foams is compared with the

hardening exponent of the solid material for different relative densities.

To make sure boundary effects are not interfering with the results, a converged sample size needed

to be found. For compression and tension, converged sample sizes were found by looking at the

overall behaviour, Young’s modulus, peak stress (in compression) and the yield stress (in tension).

The softening behaviour in compression of a foam sample is investigated in further detail with the

use of strain maps. Finally, using strain maps a comparison is made between compression and

tension.

Results of tensile experiments on T6 and annealed bulk materials were used as input parameters

for simulations to investigate the mechanical properties of T6 and annealed foams. This is done

for different relative densities. Finally, failure was analysed in tension for both heat treatments. By

monitoring the stresses in the beam elements the struts can be assigned as failed when one or more

elements exceed a certain failure stress (there is no unloading). A preliminary study for failure is

done making use of this method.
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2
The model

Making a proper model for single strut deformation is essential for modeling larger foam structures.

To describe the 2D elements the Euler-Bernoulli beam theory is used. A viscoplastic framework is

used to incorporate plasticity. Finally, a coupled model to incorporate the coupling of curvature and

axial straining is described.

2.1 Equilibrium of the beam element

Open celll foams are a simple network with neighbouring nodes connected through struts. In the

model these struts consist of 2D beam elements (See figure 2.1).

f oam

strut

beam element

Figure 2.1: The foam is modeled using struts, which exist of 2D beam elements.

Each node of a beam element has three degrees of freedom: two displacements (ûi, v̂i) and a rotation

(φ̂i). The corresponding forces and moment are denoted respectively as fx̂i
, fŷi

and m̂i, where i is

3



2.2. KINEMATICS OF THIN BEAM DEFORMATION

the node number. The (ˆ) is used to indicate that the variable is local. The quantities are organized

in two nodal vectors û and f̂:

û =

















û1

v̂1

φ̂1l0
û2

v̂2

φ̂2l0

















, f̂ =

















fx̂1

fŷ1

m̂1/l0
fx̂2

fŷ2

m̂2/l0

















(2.1)

For numerical reasons the rotational degrees of freedom are scaled by a reference length (l0) which

is the average strut length.

If an external force f̂ is acting on the beam element in figure 2.2a and there are no distributed forces

acting on the element, then the external virtual work of the beam element is

δWe = f̂iδ ûi

= fx̂1
δ û1 + fx̂2

δ û2 + m̂1δ φ̂1 + fŷ1
δ v̂1 + fŷ2

δ v̂2 + m̂2δ φ̂2. (2.2)

The external equilibrium of the element yields:

fx̂1
+ fx̂2

= 0, (2.3)

fŷ1
+ fŷ2

= 0, (2.4)

m̂1 + m̂2 + fŷ2
l = 0, (2.5)

where l is the length of the element. Equation (2.2) can be rewritten with the help of equation

(2.3)-(2.5) to

δWe = fx̂2
(δ û2−δ û1)+ fŷ1

(δ v̂2−δ v̂1 +δ φ̂1l)+ m̂2(δ φ̂2−δ φ̂1). (2.6)

2.2 Kinematics of thin beam deformation

Making use of the Euler-Bernoulli beam theory the constitutive behaviour of the beam element is

derived. The differential equations governing the linear elastic deformation of the thin beam under

fx̂1

fŷ1

fx̂2

fŷ2

m̂1

m̂2

x̂, û

ŷ, v̂

l

1

2

(a) The beam element with nodal forces and moments.

M

P

V M +dM

P+dP

V +dV

(b) Infitesimal part of the beam element with forces
and moments.

Figure 2.2: The 2D beam element.
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2.2. KINEMATICS OF THIN BEAM DEFORMATION

consideration are:

EA
d2û

dx̂2
= 0, (2.7)

EI
d4v̂

dx̂4
= 0. (2.8)

In these equations A stands for the area of the cross-section of the beam, E is Young’s modulus

and I is the moment of inertia. These equations give rise to the following relations respectively for

transverse deflection and axial displacement.

v̂(x̂) = a0 +a1x̂+a2x̂2 +a3x̂3, (2.9)

û(x̂) = b0 +b1x̂. (2.10)

Requiring these equations to satisfy the proper boundary conditions, v̂(x̂) and û(x̂) can be expressed

as functions of the nodal degrees of freedom. Applying the boundary conditions û(0) = ux̂1
and

û(l) = ux̂2
to equation (2.10) results in

û(x̂) =
[

Nu,1(x̂) Nu,2(x̂)
]

[

û1

û2

]

, (2.11)

where

Nu,1(x̂) = 1− x̂/l, (2.12)

Nu,2(x̂) = x̂/l. (2.13)

If one applies the boundary conditions v̂(0) = uŷ1
, v̂(l) = uŷ1

, dv̂
dx

(0) = φ̂1 and dv̂
dx

(l) = φ̂2 to equation

(2.9), the result is

v̂(x̂) =
[

Nv,1(x̂) Nv,2(x̂) Nv,3(x̂) Nv,4(x̂)
]









v̂1

φ̂1l

v̂2

φ̂2l









, (2.14)

where

Nv,1(x̂) =
1

l3
(2x̂3−3x̂2 + l3), (2.15)

Nv,2(x̂) =
1

l3
(x̂3l−2x̂l2 + x̂l3), (2.16)

Nv,3(x̂) =
1

l3
(−2x̂3 +3x̂2l), (2.17)

Nv,4(x̂) =
1

l3
(x̂3l− x̂2l2). (2.18)

v̂1

û1

φ̂1
l

t

b

v̂2

û2

φ̂2

Figure 2.3: Beam element with nodal quantities and geometrical variables.
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2.2. KINEMATICS OF THIN BEAM DEFORMATION

Equations (2.12)-(2.13) and (2.15)-(2.18) are the shape functions. The nodal quantities and geomet-

ric variables are explained in figure 2.3. Euler-Bernouilli beam theory also describes that

AE
du

dx
= P, (2.19)

EI
d2v̂

dx̂2
= EIκ = M, (2.20)

EI
d3v̂

dx̂3
= V. (2.21)

Used in combination with the nodal displacement û expressions for fx̂2
, fŷ1

, m̂1 and m̂2 can be

obtained. The axial force in the beam is

fx̂2
=

AE

l
(û2− û1) (2.22)

and the shear force in the beam is

fŷ1
=

EI

l3
(12v̂1 +6lφ̂1−12v̂2 +6lφ̂2). (2.23)

The bending moment at the first node and respectively the second node of the beam are

m̂1 = M(x̂ = 0) =
EI

l3
(6lv̂1 +4l2φ̂1−6lv̂2 +2l2φ̂2l), (2.24)

m̂2 = M(x̂ = l) =
EI

l3
(6lv̂1 +2l2φ̂1−6lv̂2 +4l2φ̂2l). (2.25)

Now fx̂2
= P, fŷ1

= V and m̂2 = M(x̂ = l) are chosen as the generalized stresses:

ŝ =





ŝ1

ŝ2

ŝ3



=





fx̂2

fŷ1

m̂2/l



 . (2.26)

The generalized stresses can be rewritten to the following:

ŝ1 =
EA

l
(û2− û1), (2.27)

ŝ2 = 12
EI

l3
(v̂1− v̂2 + φ̂1l)+6

EI

l3
(φ̂2− φ̂1)l, (2.28)

ŝ3 = 6
EI

l3
(v̂1− v̂2 + φ̂1l)+4

EI

l3
((φ̂2− φ̂1)l), (2.29)

from which the generalized strains can be extracted. This results in

ê =





ê1

ê2

ê3



=





û2− û1

v̂1− v̂2 + φ̂1l

(φ̂2− φ̂1)l



 . (2.30)

From the generalized stresses and strains the following stress-strain relation can be derived

ŝ1 =
EA

l
ê1, (2.31)

ŝ2 = 12
EI

l3
ê2 +6

EI

l3
ê3, (2.32)

ŝ3 = 6
EI

l3
ê2 +4

EI

l3
ê3, (2.33)
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2.3. PRINCIPLE OF VIRTUAL WORK

which is in matrix form




ŝ1

ŝ2

ŝ3



=





AE/l 0 0

0 12EI/l3 6EI/l3

0 6EI/l3 4EI/l3









ê1

ê2

ê3



= Ĉê. (2.34)

Equation (2.34) describes the constitutive behaviour at a local level. Ĉ is called the local stiffness

tensor, it captures the constituive behaviour.

With the nodal displacement vector and the chosen generelazed strains the strain to displacement

relationship can be written as

ê = B̂û, (2.35)

where

B̂ =





−1 0 0 1 0 0

0 1 l/l0 0 −1 0

0 0 −l/l0 0 0 l/l0



 . (2.36)

In the case of inelastic deformation the total strain is the sum of an elastic and an inelastic strain:

ê = êel + ê∗, (2.37)

where the inelastic part has a plastic and an optional fracture component (e.g. ê∗ = êpl + êfr).

In the following section equation (2.34), (2.35) and (2.37) are used with the weak form of equilib-

rium in discrete form to come to a final expression for our finite element framework.

2.3 Principle of virtual work

The principle of virtual work is

(δ ê)T ŝ = (δ û)T f̂. (2.38)

Taking the time derivative one obtains the incremental principle of virtual work

(δ ê)T ˙̂s+(δ ˙̂e)T ŝ = (δ û)T ˙̂
f. (2.39)

The relations for stress-strain and its time derivative (making use of equation (2.35)) are given

respectively by:

ŝ = Ĉêel (2.40)

˙̂s = Ĉ˙̂e
el

= Ĉ( ˙̂e− ˙̂e∗) = Ĉ(B̂ ˙̂u− ˙̂e∗) = Ĉ(Bu̇− ˙̂e∗) (2.41)

The last equality holds because û = Tu and B = B̂T. Here T is a transformation matrix, which

transforms the coordinates from a rotated frame of reference under an arbitrary angle θ to a global

frame of reference (please see figure 2.4). This transformation matrix T will look like

T =

















C S 0 0 0 0

−S C 0 0 0 0

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 −S C 0

0 0 0 0 0 1

















, (2.42)
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uŷ1

ux̂1

ux̂2

uŷ2

φ̂1

φ̂2

β

β

x̂
ŷ

x

y

uy1

uy1

ux1

ux1

φ1

φ2

Figure 2.4: Transformation of coordinates. The 2D beam element is rotated at an arbitrary angle. The

upper left beam element has coordinates in a local frame reference, while the bottom right element’s

coordinates are transformed to a global frame of reference.

where C = cosβ and S = sinβ . Using T one can transform for example B̂ to

B = B̂T =





−C −S 0 C S 0

−S C l/l0 S −C 0

0 0 −l/l0 0 0 l/l0



 . (2.43)

Because an updated Lagrangian scheme is used u = 0 and equation (2.41) changes to

˙̂s = Ĉ(Ḃuel +Bu̇el) = ĈBu̇el. (2.44)

We can now rewrite equation (2.39) making use of (2.37) and de previous equation to

(δu)T keu̇− (δ ê)T Ĉ˙̂e
∗
+( ˙δ ê)T ŝ = (δ û)T ˙̂

f, (2.45)

where ke = BT CB. Here ke will look like

ke =

















τC2 +12ξ S2 (τ−12ξ )CS −6τSl/l0 −τC2−12ξ S2 (12ξ − τ)CS −6τSl/l0
τS2 +12ξC2 6τCl/l0 (12ξ − τ)CS −τS2−12ξC2 6τCl/l0

4τl2/l2
0 6τSl/l0 −6τSl/l0 2τl2/l2

0

τC2 +12ξ S2 (τ−12ξ )CS 6τSl/l0
symmetry τS2 +12ξC2 −6τSl/l0

4τl2/l2
0

















,

(2.46)

where τ = EA
l

and ξ = EI
l3 . The last part on the left hand side of eqaution (2.45) gives rise to a

geometric stiffness considering non-linear expressions in the axial terms. We take for the geometric

stiffness matrix

kg =

















0 c1S csS 0 −c1S c2S

0 c1C csC 0 −c1C c2C

0 c2 c3 0 −c2 −c4

0 −c1S −c2S 0 c1S −c2S

0 −c1C −c2C 0 c1C −c2C

0 c2 −c4 0 −c2 c3

















, (2.47)
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where c1 = 6
5

ŝ1
l

, c2 = 1
10

ŝ1
l0

, c3 = 2
15

ŝ1
l

l2
0

and c4 = 1
30

ŝ1
l

l2
0

.

With these rearrangements equations (2.45) becomes

(δu)T
[

(ke +kg)u̇−BT Ĉ˙̂e
∗]

= (δu)T ḟ. (2.48)

The problem with this equation is that the inelastic strain rate is required at the current time step.

The assumption is made that plasticity is the limit of power law creep. Then the inelastic strain

component in equation (2.48) can be incrementally computed at every timestep and this allows the

model for implementation in a linear finite element framework. Proceeding in this manner equation

(2.48) can be written in the form

ku̇ = ḟ+ ḟ∗. (2.49)

In literature k usually is referred to as the local stiffness matrix

k = ke +kg (2.50)

and ḟ∗ is the viscoplastic force:

ḟ∗ = BT Ĉ˙̂e
∗
. (2.51)

Finally, one can arrive at the following finite element equations for the whole system by element

assembly

K∆U = ∆F, (2.52)

where K is the global stiffness matrix:

K =
N
∧

n=1

(kg
(n) +ke

(n)) (2.53)

and

∆F =
N
∧

n=1

(∆f(n) +∆f∗(n)), (2.54)

where N is the total number of elements and n refers to the element number. The
∧

-symbol indicates

the assembly of the global stiffness matrix and force vector.

2.4 Viscoplastic framework

Before solving the finite element equation to get the unknown displacements one needs to calculate

the viscoplastic force. For this the inelastic strain rates are needed.

A computationally convenient way around the time independent nature of plasticity is to use a

viscoplastic formulation. Here, a creep law is used, which approaches time independent plasticity

as the creep exponent (n) approaches infinity. Emphasized needs to be the fact that this creep law is

only used as a numerical tool. It has nothing to do with the physical phenomenon creep.

The creep law for the axial strain is

ε̇x = ε̇0

(

σx

σ0

)n

. (2.55)
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2.5. COUPLING

The creep exponent must be an odd integer, n = 101 turns out to be sufficient. Assuming that the

assumptions for the Euler-Bernouli theory still hold during plastic deformation, using ε̇vp
x = yκ̇vp

equation (2.55) can be rewritten to

σ vp
x = σ0

(

yκ̇vp

ε̇0

)
1
n

(2.56)

For a beam with a rectangular cross-section with thickness t and out-of-plane thickness b the mo-

ment can be calculated using M =
∫ t/2

−t/2
σxy dA, resulting in

M =
t2σ0b

2

n

2n+1

(

t

2ε̇0
κ̇vp

)
1
n

. (2.57)

If this expression is rearranged one can obtain a relation for the local curvature rate

κ̇ = κ̇0

(

M

M0

)n

, (2.58)

where

M0 = t2σ0b
2

n
2n+1

and κ̇0 = ε̇0

2
. (2.59)

If n→ ∞, M0 is the “plastic moment”, corresponding to the yielding of the complete cross-section

and Mp = t2σ0b/4 = M0.

2.5 Coupling

In this section the Gibson and Ashby (G&A) model for plastic buckling of foams is improved. The

G&A model assumes that complete yielding of the beam cross-section occurs instantaneous when

the yield stress is reached. The gradual transition from a fully elastic to a partial elastic element and

partial plastic to a fully plastic element is ignored. No hardening is taken care of while considering

coupling between axial and bending strains. In the used model both mechanisms are incorporated

into a non-layered model. A description is given for a coupled and an uncoupled model. The

latter is described because it is used for scaling relationships described in chapter 5. In the coupled

model the influence of axial strain is taken into account for moment calculation, where as in the

uncoupled the stress profile always remains symmetric. One will also find a detailed comparison of

both models in chapter 5.

2.5.1 Uncoupled model

The incorporation of the gradual plastification of the beam element is an important improvement

compared to the G&A model.

In figure 2.5 a schematic representation is shown of the stress profile for a beam element to which

an arbitrary moment is applied.

For the uncoupled case the axial strain of a horizontal fiber is related to the curvature through

εx(y) =−κy, (2.60)

10
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t/2

M M

ζ

−σys −t/2 σys σ

y

−ζ

Figure 2.5: A schematic figure of the stress profile for the uncoupled model. This is the stress profile for

power law hardening.

where κ is the curvature of the beam along the neutral axis. The moment and the axial force for

any cross-section is obtained by integrating the stress σ(y) over the thickness of the beam. The

assumption is made that these relations also hold during plastic deformation.

For the axial stress with linear hardening the following relations during elasticity and plasticity are

used.

σ =

{

Eε for 0≤ |ε| ≤ εys

sign(ε)(σys(1− γ)+H|ε|) for |ε|> εys

(2.61)

and for power law hardening these equations are

σ =

{

Eε for 0≤ |ε| ≤ εys

sign(ε)σys(1+E/σys(|ε|− εys))
m for |ε|> εys

, (2.62)

where εys(= σys/E) represents the yield strain, m the hardening exponent and γ = H/E in which H

is the plastic modulus. The onset of plasticity occurs when the top and bottom fiber reaches the yield

stress (this will happen at the same instant, because the stress profile is symmetric). From now on

the beam will have a plastic shell and an elastic core. Depending on the bending moment the spread

of plasticity and the size of the elastic core will differ. If the moment increases the elastic core will

shrink. As κ → ∞ the elastic core diminishes to a single neutral fiber of infitesimal thickness.

According to this the moment for linear hardening will be

M =−2b

∫ t/2

0
σx(y)ydy (2.63)

=−2b

(

∫ ζ

0
Eκy2 +

∫ t/2

ζ
sign(|ε|)(σys(1− γ)+H|ε|)ydy

)

(2.64)

and the moment for power law hardening is

M =−2b

(

∫ ζ

0
Eκy2 +

∫ t/2

ζ
sign(|ε̄|)σys(1+E/σys(|ε̄|− εys))

mydy

)

, (2.65)

which consists out of a plastic and an elastic part. The stress σx(y) in the equations is the stress from

respectively equation (2.61) and (2.62) as function of the axial strain: σx(y) = σ(εx(y)). Boundary

between the elastic and the plastic region of the beam is ζ = − t
2

κ0

κ . In these functions κ0 is the

11



2.5. COUPLING

curvature at the onset of yielding. This results in the final expression for the moment with linear

hardening

M(κ) =

{

EIκ for 0≤ |κ| ≤ |κ0|
EIκ

(

(1+ γ)
(κ0

κ

)3
+ γ
)

+ sign(κ)Mp(1− γ)
(

1−
(κ0

κ

)2
)

for |κ|> |κ0|
(2.66)

and the moment with power law hardening

M(κ) =

{

EIκ for 0≤ |κ| ≤ |κ0|
EIκ

(κ0

κ

)3
+ sign(κ) 2

2+m
Mp

(κ0

κ

)m
(

1−
(κ0

κ

)2+m
)

for |κ|> |κ0|
, (2.67)

which are functions of the curvature κ and where Mp = 1
4
bt2σys.

The force is calculated through P = 2b
∫ t/2

0 σ(ε̄)dy, where σ(ε̄) refers to linear hardening and power

law hardening respectively from equation (2.61) and (2.62). This results in

P(ε̄) =

{

EAε̄ for 0≤ |ε̄| ≤ εys

sign(ε)(σys(1− γ)+H|ε̄ |)A for |ε̄|> εys

(2.68)

for linear hardening and

P(ε̄) =

{

EAε̄ for 0≤ |ε̄| ≤ εys

σyssign(ε̄)(1+E/σys(|ε̄|− εys))
m

A for |ε̄|> εys

(2.69)

for power law hardening, which are a function only of the axial strain ε̄ . Here A is the area of the

cross-section of the beam element.

2.5.2 Coupled model

The coupled model also takes into account the effect of axial straining on the moment and curvature

on the axial force. Therefore, the function for axial strain inside the beam element changes to

εx(y) = ε̄−κy. (2.70)

Now both the force and moment expression will depend on κ and ε̄ i.e. P(ε̄ ,κ) and M(ε̄ ,κ). The

same constitutive law for the material is used (equation (2.62)), but now as a function of the strain

εx(y) from equation (2.70).

For the uncoupled model the stress and strain profiles remain symmetric, however, for the the cou-

pled model this is not anymore the case. Because of this the integral has to be divided in three

parts. One part for the top plastic fibers, one part for the elastic core and part for the bottom plastic

fibers. During the calculation one needs to closely track the boundaries between elastic and plastic

regions (ζ⊕ and ζ⊖, see figure 2.6). For example, it can occur that there are only top plastic (or

bottom plastic) fibers. If this happens one part of the integral should be left out in the calculation.

Another possibility is that the complete cross-section started yielding. For this case only one part of

the integral needs to be calculated. All of these exceptions are taken care of in the code.
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t/2

M M
ε̄

−σys −t/2 σys σ

ζ⊕

ζ⊖

y

Figure 2.6: A schematic figure of the stress profile for the coupled model.

The complete integral is divided into three parts

M(ε̄,κ) = −b

∫ t/2

−t/2
σx(y) y dy (2.71)

= −b

(

∫ ζ⊖

−t/2
sign(εx(y))σys (1+α(|εx(y)|− εys))

m
y dy

+
∫ ζ⊕

ζ⊖
Eεx(y) y dy

+
∫ t/2

ζ⊕
sign(εx(y))σys (1+α(|εx(y)|− εys))

m
y dy

)

, (2.72)

which finally becomes

M(ε̄ ,κ) = −b

(

σys

(m+1)ακ

(

−
(

1+α(|ε̄ +κ t
2
|− εys)

)m+1 t
2
− (1+α(|ε̄−κζ⊖|− εys))

m+1
ζ⊖
)

+
σys sign(ε̄ +κ t

2
)

(m+1)(m+2)α2κ2

(

(

1+α(|ε̄ +κ t
2
|− εys)

)m+2−
(

1+α(|ε̄−κζ⊖|− εys)
)m+2

)

+ E

(

κ

3

(

ζ⊖3−ζ⊕3
)

+
ε̄

2

(

ζ⊕2−ζ⊖2
)

)

+
σys

(m+1)ακ

(

(

1+α(|ε̄−κζ⊕|− εys)
)m+1

ζ⊕−
(

1+α(|ε̄−κ t
2
|− εys)

)m+1 t
2

)

+
σys sign(ε̄−κ t

2
)

(m+1)(m+2)α2κ2

(

(

1+α(|ε̄−κζ⊕|− εys)
)m+2−

(

1+α(|ε̄−κ t
2
|− εys)

)m+2

)

)

,

(2.73)

where α = E/σys, ζ⊕ =
σys

|κ|E + sign(κε̄)
∣

∣

ε̄
κ

∣

∣ and ζ⊖ =− σys

|κ|E + sign(κε̄)
∣

∣

ε̄
κ

∣

∣. The first two lines of

equation (2.73) correspond to the plastic top fibers, the third line represents the elastic core and the

last two lines correspond to the plastic bottom fibers.

13



2.5. COUPLING

The force is calculated in a similar fashion. Again the integral is divided into three parts.

P(ε̄,κ) = b

∫ t/2

−t/2
σx(y) dy (2.74)

= b

(

∫ ζ⊖

−t/2
sign(εx(y))σys (1+α(|εx(y)|− εys))

m
dy

+
∫ ζ⊕

ζ⊖
Eεx(y) dy

+
∫ t/2

ζ⊕
sign(εx(y))σys (1+α(|εx(y)|− εys))

m
dy

)

, (2.75)

which becomes

P(ε̄ ,κ) = −b

(

(

1+α(|ε̄ +κ t
2
|− εys)

)m+1− (1+α(|ε̄−κζ⊖|− εys))
m+1

(1+m)ακ

+ E
(κ

2

(

ζ⊖2−ζ⊕2
)

+ ε̄
(

ζ⊕−ζ⊖
)

)

+

(

1+α(|ε̄−κ t
2
|− εys)

)m+1− (1+α(|ε̄−κζ⊕|− εys))
m+1

(1+m)ακ

)

. (2.76)

The moment and force relations (resp. relation (2.73) and (2.76)) hold for linear and power law

hardening. For power law hardening the factor α is unchanged, while for linear hardening α =
H/σys and m = 1.

However, these equations cannot be directly eomployed for a perfect plastic material. For uniaxial

loading κ = 0, while κ appears either in equation (2.77) and equation (2.78) in the denominator.

For this case the force and moment are analysed seperately. This results in

M(ε̄,κ) = b
σys

2

(

sign(ε̄ +κ t
2
)( t2

4
−ζ⊖2

)+ sign(ε̄−κ t
2
)(ζ⊕2− t2

4
)
)

+ 2b
3

Eκ
(

ζ⊕3−ζ⊖3
)

(2.77)

for the moment and in

P(ε̄ ,κ) =−bσys

(

sign(ε̄ +κ t
2
)(ζ⊖+ t

2
)+ sign(ε̄−κ t

2
)(ζ⊕− t

2
)
)

+ b
2
Eκ
(

ζ⊕2−ζ⊖2
)

(2.78)

for the force.
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3
Program architecture

The simulation can be divided into three stages. The first stage is the network generation. A matlab

algorithm is used to generate Voronoi tessellations prior to the actual simulation, which will be the

second stage. This stage consists out of a FORTRAN program calculating the strains, stresses and

displacements in the network for a given applied strain. The third stage is a postprocessing program,

also done in FORTRAN, which generates a strain map based on the displacements output by the

simulation in the second stage.

3.1 Voronoi tessellations

Voronoi networks are used as input for the simulations. The generation of random distribution

of the Voronoi cells involves similar physics as the foaming process, where bubbles nucleate at

random points forming the foam. The growth process of an isotropic structure is similar to a Voronoi

tessellations based on a set of random points (nuclei) under the following assumptions.[9]

1. All nuclei appear simultaneously.

2. All nuclei remain fixed in location throughout the growth process.

3. For each nucleus the growth occurs at the same rate in all directions.

4. The linear growth rate is the same for each cell associated with a nucleus.

5. Growth ceases for each cell whenever and wherever it comes into contact with a neighbouring

cell.

It is clear the process of forming a foam is more complex, however, the structure of many foams is

in close agreement with Voronoi tessellations under previous stated assumptions [1].
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3.1. VORONOI TESSELLATIONS

3.1.1 Network generation

Cell size distribution

The network generation starts with generations of random points (seeds) in a rectangle with area A0.

After the first seed has been generated the subsequent seeds will be accepted only if the distance to

any existing seeds is greater than a minimum allowable distance δ . This proces will continue until

the the rectangle is filled with n seeds. Through the δ parameter the size distribution of the cells can

be controlled.

Randomness

To classify the randomness of the structure the minimum allowable distance between the seeds is

normalized by

d0 =

√

2A0√
3n

. (3.1)

Now we can define a parameter α to quantize the randomness: α = δ/d0. For a regular honeycomb

α = 1 and for a completely random Voronoi tessellation α = 0.

The set of points after this procedure is used to create the Voronoi tessellations. Now, Delaunay

triangulation is done, meaning that adjacent seeds are connected to each other by straight lines.

After this Voronoi polygons are created by truncating the perpendicular bisectors (for the created

begin

Input the structure, material

parameters and boundary conditions.

Preparation of the skyline (needed

for solving), initialization of the

variables to zero

u < u f inal?

Integrate over the cross-section to

apply σ0 and M0 to the

viscoplastic framework

end Solve the finite element equation F = K∆U

Update variables and write output if

time-stepping rules permit this and

increase time-step. If time-stepping

rules do not allow updating, variables

are not updated, the time-step is

decreased and the last increment is
calculated again.

yes

no

Figure 3.1: A flowchart of the FORTRAN program.
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lines) at their interscetion points. After the tessellation is done another Delaunay triangulation is

peformed which is used later on for the strain mapping.

All of this is done with the commercial software Matlab, which already has built-in routines for

Delaunay triangulation and Voronoi tessellation generation.

3.2 FORTRAN code

The finite element framework is calculated with the use of a FORTRAN program. Because of the

high level of complexity and the large amount of lines of code in the program, only the basic outline

of the program will be discussed here.

The program is an extension of an existing finite element framework code. Figure 3.1 shows a sim-

plified flowchart of the program. For this thesis the majority of the modifications were made in the

most right top box, where the hardening properties of the material come into the picture. Of course

we also deal with the first box, where the material parameters, input structure and boundary condi-

tions are set. For different kinds of input structures time-stepping needs to be adjusted accordingly,

which takes place in the bottom right function box. In this box the output is also written which is

important for analysis and postprocessing.

3.3 Strain mapping

Strain mapping is a postprocessing procedure to visualize the strain in a foam for detailed analysis.

The method is based on [5] pp. 62. It was originally designed for small deformation i.e. elastic

deformation, but since our simulation deals with large deformations we should work with accumu-

lation of incremental strains instead of total strains.

A simulation performed on a foam outputs incremental displacements for each node at every timestep.

Using these incremental displacements (∆u
j
i ) the strain in each triangle can be calculated. This re-

sults in the following incremantal strains





∆ε11

∆ε22

∆ε12



=





N
p
1 0 Nr

1 0 N
q
1 0

0 N
p
2 0 Nr

2 0 N
q
2

N
p
1 /2 N

p
1 /2 Nr

2/2 Nr
1/2 N

q
2/2 N

q
1/2





















∆u
p
1

∆u
p
2

∆ur
1

∆ur
2

∆u
q
1

∆u
q
2

















, (3.2)

where N
j

i (i = 1,2 and j = p,q,r) are the shape functions. These shape functions have the following

form [10]
N

p
1 = (y2− y3)/A N

p
2 = (x3− x2)/A,

N
q
1 = (y3− y1)/A N

q
2 = (x1− x3)/A,

Nr
1 = (y1− y2)/A Nr

2 = (x2− x1)/A,
(3.3)

where A refers to the area of the triangle and x1-x3 and y1-y3 refer to respectively the x-coordinates

and the y-coordinates of the triangle’s nodes.

Now, the strain map can be constructed in two ways: on method is by taking the average incremental

strain of all the triangles surrounding a node normalized by the area of the triangles. This method
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Figure 3.2: Schematic picture of a part of a 2D foam sample.

will be called the “triangle averaging” method. The other method is by taking the average incre-

mental strain of all surrounding cells normalized by the area of these cells (the incremental strain in

a cell is the average strain of its triangles normalized by the triangle’s area). This will be called the

“cell averaging” method.

Please refer to figure 3.2 for the following explanation about the strain calculation methods. If one

would like to calculate the incremental strain in the red node, the cell averaging method will result

in

∆ε =

(

3

∑
i=1

∆εiAi

∑3
j=1 A j

+
6

∑
i=4

∆εiAi

∑6
j=4 A j

+
12

∑
i=7

∆εiAi

∑12
j=7 A j

)

/
12

∑
j=1

A j , (3.4)

(a) Cell averaging method. (b) Triangle averaging method. (c) Constant strain for each triangle.

Figure 3.3: The different strain map methods. Shown for a 16×20 Voronoi with fully constrained boundary

conditions (please see the next chapter for an explanation of these boundary conditions). Please note

that the color levels of the figures 3.3a and 3.3b correspond with each other and that the color levels in

figure 3.3c are a different set.
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3.3. STRAIN MAPPING

while the triangle averaging method will result in

∆ε =
∑i=2,3,4,5,7,9,10 ∆εiAi

∑i=2,3,4,5,7,9,10 Ai
. (3.5)

The numbers refers to the triangles in figure 3.2: ∆εi stands for the incremental strain in triangle i

and Ai is the area of triangle i.

Figure 3.3 shows the two different strain mapping methods and also a strain map with constant strain

per triangle for reference.

The disadvantage of the triangle averaging method is that it depends on the way of discretization

of the cells into triangles. There can be more than one triangulation of the same domain depending

on the way the Delaunay triangulation is performed. This can be done per cell or over the whole

structure. These two yield different results. It can be seen in figure 3.4 that the strain map can look

very different if the triangle discretization in a single cell is changed. An advantage, however, is that

a more detailed strain map can be constructed. A strain map in which smaller localized strains will

be visible. In a strain map from the cell averaging method the strain will be more ‘smeared out’,

but the strain map will not depend on the discretization of the cells. Because of this last reason a

decision was made to use the strain map with the cell averaging method.
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3.3. STRAIN MAPPING

(a) (b)

(c) (d)

(e)

Figure 3.4: Different strain maps for different cell discretizations for the triangle averaging method. Snap-

shots of strain maps of a 16×20 cells Voronoi network in compression. The middle cell’s discretization is

changed. Even if the discretization of only one cell is changed the strain map still can look very different.

Compare for example figure 3.4a to figure 3.4e.
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4
Sample size effects

It is known that as the sample gets smaller, the boundary effects become more influential and as

a result foam properties will be very different. Therefore it is important to use a sample size for

which these effects are absent. To find out the optimal sample size of the network, which will be

used as a standard size for the rest of the simulations, a number of sample sizes has been analysed in

order to find a converged sample size. Convergence in Young’s modulus, yield stress (tension) and

peak stress (compression) is considered to get rid of the sample size effects. Finally, a comparison

between tension and compression is made using strain maps.

4.1 Boundary conditions

fx = φ = 0 v = U

fx = v = φ = 0

v = u = φ = 0

Figure 4.1: The boundary conditions chosen for the Voronoi networks.

In order to make the simulations comparable with experiments on bulk materials one needs to find

the best boundary conditions for the problem at hand. The best choice in this case is shown in figure
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4.1. BOUNDARY CONDITIONS

(a) Fully constrained (b) Rotations constrained (c) Free

E PS 22

0

-0.0106667

-0.0213333

-0.032

-0.0426667

-0.0533333

-0.064

-0.0746667

-0.0853333

-0.096

Figure 4.2: Compression strain maps for different boundary condition sets at an overall strain of ε∗ = 0.014.

4.1. Here the lower boundary nodes are constrained to move in the vertical direction and to rotate.

Furthermore the most bottom left node is also constrained to move in the horizontal direction. The

left and right boundary nodes are free. The top boundary nodes are constrained to rotate and free to

move in the horizontal direction. To deform the structure a displacement in the vertical direction is

applied to the top boundary nodes.

Why are these the chosen boundary conditions? This set of boundary conditions is the result of

a study where the strain maps with different boundary conditions sets were compared. Figure 4.2

shows the strain maps for these different sets of boundary conditions. In all of the sets the most

bottom left node is fully constrained. Besides the set shown in figure 4.1 (and also 4.2b) called

‘rotations constrained’ there also is a set called ‘fully constrained’ where additionally the top and

bottom nodes are constrained in the horizontal direction (see figure 4.2a). The third set is called
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2
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Figure 4.3: Average stress strain curves for different sample sizes in tension. The average is taken over five

different random realizations with the same size. The error bars indicate the standard deviation of these

five samples.
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4.2. TENSION
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(a) Young’s modulus

(×10−3)

σ∗

σys

sample width (number of cells)
0 5 10 15 20 25

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(b) Yield stress

Figure 4.4: Sample size effect on Young’s modulus and the yield stress in tension. Young’s modulus is the

slope of the σ − ε curve over inital elastic range. The yield stress is the 0.2% offset stress.

‘free’. Here, the top and bottom nodes’ rotations and horizontal movement are not constrained

(figure 4.2c).

The first observation which can be made from this figure is that the more constraints are added the

more strain will localize. For the fully constrained case strain seems to localize in two bands. This

effect gets smaller if constraints on the structure are removed. By fully constraining the top and

bottom nodes we basically are excluding the top and bottom region from the simulation. It is clear

that the amount of strain in these regions is almost zero. This would be a waiste of computational

power, because the elements in these regions still need to be accounted for in the calculation. These

boundary conditions are not an option. The free and the rotation constrained set look very alike, but

there is a reason why the rotation constrained set’s boundary conditions are used. When rotation

is not constrained in the top and bottom nodes displacement in the horizontal direction of the top

and bottom can be an unrealistic large influence on the strain maps, especially in compression. For

large strains struts touching the top or bottom boundary can start intersecting each other causing a

huge interference in the strain map. For future prospects when fracture will be incorporated into the

model constraining the rotation also will prevent these boundary struts from fracturing prematurely.

4.2 Tension

In figure 4.3 different stress strain curves in tension are plotted for different sample sizes. Only the

width of the sample size is changed, varying from 2 to 24 cells. The height remains constant at

20 cells. Furthermore all other input parameters (of the solid material) including relative density

of the sample, yield strength and Young’s modulus are kept constant at respectively ρ∗/ρs = 10%,

σys = 150MPa and Es = 70GPa. These simulations were performed for power law hardening, where

the hardening exponent was ms = 0.2. Convergence is sufficient when the sample size 16×20 cells

is reached.

Young’s modulus and the yield stress also are converging when sample size is increased. For each

size the Young’s modulus and yield stress are calculated for all the five different random realizations.

Young’s modulus is the slope of the stress strain curve in the initial elastic range. The yield stress is
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4.3. COMPRESSION
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Figure 4.5: Average stress strain curves for different sample sizes in compression. The average is taken

over five different random realizaions with the same size. The error bars indicate the standard deviation.

defined at the intersection of the stress strain curve with a straight line of slope E intersecting at the

y = 0 axis at ε∗ = 0.002 (this definition of yield stress is called the 0.2% offset stress). Respectively

the average value and the standard deviation of these Young’s moduli and yield stresses are plotted in

figure 4.4a and 4.4b. For the Young’s modulus as well as the yield stress one observes convergence

around 16×20 cells.

4.3 Compression

Figure 4.5 shows an overview of the stress strain behaviour for different sample sizes in compres-

sion. This figure is generated in an analogous way as figure 4.3, but now for compressive boundary
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(a) Young’s modulus
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(b) Peak stress

Figure 4.6: Sample size effect on Young’s modulus and the peak stress in compression.
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4.3. COMPRESSION

conditions. It is clear that the curves are converging, but it is not so obvious where this is happen-

ing exactly. For compression bands of collapsed cells form in the foam, resulting in hardening and

softening of the stress strain curves after the peak stress. Since all of these curves are averages of

different random realizations, this effect of hardening and softening is blurring our vision. Increas-

ing the number of realizations taken for each sample size would diminish this effect. However, these

results combined with the results in figure 4.6 are sufficient to choose a converged sample size.

In figure 4.6a Young’s modulus of the foam is shown for different sample sizes. Young’s modulus

is defined in the same way as for the tension simulations. A different foam parameter - peak stress

- is displayed in figure 4.6b. It is defined to be the maximum stress value of the stress strain curve

of a foam sample. In figures 4.6a and 4.6b the average and standard deviation of five realization per

sample size are shown. Again we decide that the converged sample size is 16×20 cells.
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4.4. STRAIN MAPS: COMPRESSION AND TENSION

(a) Tension. (b) Compression.

Figure 4.7: Strain maps for tension and compression on a 40×20 Voronoi network.

4.4 Strain maps: compression and tension

In figure 4.7a and 4.7b one will find strain maps in tension and compression respectively for a

40× 20 Voronoi at a strain of ε∗ = 0.077. A clear difference between tension and compression is

the localization of strain. In tension the strain map looks homogeneous, where as the strain map

for compression shows a clear localization of strain in two bands formed in the middle. In tension

the struts will try to align making the foam stiffen and spreading the strain throughout the network.

In compression, on the contrary, the deformation will localize in the weakest regions of the foam.

Once a cell starts to collapse in one of these weak regions it will also affect its neighbouring cells,

starting the formation of a band of collapsed cells. In experiments one will observe the same effect,

however there bands most often occur at 90◦ to the loading direction, while in the 2D simulations

only inclined bands at 60◦ to the loading direction were observed [12],[8].
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5
Hardening effects

Strain hardening of the foam material plays a significant role after the foam has started to yield. It

also has a very important influence on the onset of failure. In this chapter we start with simple linear

hardening, where the solid material of the foam has a bilinear stress strain curve. The relationships

between the yield strength, Young’s modulus and the plastic modulus of the solid material and the

foam will be investigated. After this we proceed with power law hardening, a more realistic model,

for which the same relations are studied as a function of the relative density of the foam. Finally,

the hardening exponent’s influence on strain maps is studied followed by a short section on the

non-uniform cross-section.

σ∗

σ∗pl

ε∗pl

H∗

E∗

ε∗

(a) Foam

σ

σys

εys

Hs

Es

ε

(b) Solid Material

Figure 5.1: Bilinear responce of the foam and the solid material.
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5.1. LINEAR HARDENING

5.1 Linear hardening

As stated before, a material which hardens linearly exhibits a bilinear stress strain curve, as shown

in figure 5.1b. The material behaviour will take the form σ0 = sign(ε)(σys +Hs|ε pl|), where σys =
150MPa and Hs = 5GPa are used in the simulations presented here. Analytical expressions for

relationships between the foam and the solid material for Young’s modulus and the plastic collapse

strength for regular hexagons can be found in the literature [1]. An additional relationship for the

plastic modulus is derived in this section. One has to keep in mind that - strictly speaking - these

expressions are only valid for the uncoupled model, although the outcome of simulations on the unit

cell does not significantly differ with the coupled model. A more detailed study of the difference

between the coupled and the uncoupled and other properties are discussed in the following section.

5.1.1 Deformation of a strut in an hexagonal unit cell

A simplification of a regular hexagonal honeycomb structure is the unit cell. Making use of the

hexagon’s symmetries the honeycomb structure can be greatly simplified. The unit cell only exists

out of two struts, making it computationally convenient. This unit cell is used to simulate regular

hexagonal structures.

 

fx = m = 0
v = U

30◦
u = fy = φ = 0

u = v = φ = 0

l

Figure 5.2: The unit cell and its (free) boundary conditions.

In figure 5.2 a schematic drawing of the unit cell can be found including the applied boundary condi-

tions. The stress (σ∗) and the strain (ε∗) are calculated through ε∗ = 4U/(3l) and σ∗ = 2F/(
√

3l).
The force F is obtained from the simulation for a prescribed macroscopic displacement U . The

point where the two struts of the unit cell intersect, will be called the triple point. The two struts in

the unit cell actual are half of a strut in the hexagonal structure. The other half does not need to be

accounted for since it is symmetrical to the first half included in the unit cell. If a reference is made

to a strut in the unit cell, what is meant is the half of a strut in the regular hexagonal honeycomb

structure.
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5.1. LINEAR HARDENING

The boundary conditions described in figure 5.2 are from now on called the “free” boundary con-

ditions. The majority of the simulations are done with these boundary conditions. When it is not

mentioned otherwise, the free boundary conditions are used. If also the horizontal movement in the

most upper point of the unit cell is constrained (u = 0) we will call it the “constrained” boundary

conditions. These boundary conditions are used in some of the more detailed studies.

In chapter 2 we mentioned two hardening models: the coupled and the uncoupled model. Hav-

ing explained the unit cell and its possible boundary conditions we now can look at the effect of

coupling.
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5.1. LINEAR HARDENING
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(b) Normal force vs axial strain for the element next to the triple
point.
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(c) Moment vs curvature for the element next to the triple point.
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(e) Normal force vs axial strain for the element next to the triple
point.
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(f) Moment vs curvature for the element next to the triple point.

Figure 5.3: Comparison between the unit cell with the coupled model (solid lines) and with the uncoupled

model (dashed lines). Linear hardening. Images 5.3a-5.3c consider the free boundary conditions, im-

ages 5.3d-5.3f consider the constrained boundary conditions. The stress strain curves are normalized

with σ∗pl = 2/3σys(ρ
∗/ρs)

2.
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5.1. LINEAR HARDENING

In figure 5.3 the results of the coupled and the uncoupled model for linear hardening are shown.

First we focus on the case with the free boundary conditions (figures 5.3a-5.3c). The difference of

the overall behaviour is small if not negligible. Note that the stress strain curves are normalized with

σ∗pl = 2/3σys(ρ
∗/ρs)

2, this value is used throughout the thesis to normalize stress strain curves of

the unit cell and Voronoi networks. By looking at the force and moment plots of the element next

to the triple point, one notices that for the uncoupled model the force remains elastic. However, the

force curve of the coupled model is non-linear. This can be explained by the combined influence

of the moment and force on the strain. Besides the axial strain the force is also influenced by the

curvature. This curvature is rather large compared to the axial strain in a bending structure like

the unit cell with free boundary conditions. Because the strains and forces in figure 5.3b are small

and the moment curves in figure 5.3c are very similar the flaws of the uncoupled model barely are

noticeable in the overall behaviour.

The difference of the stress strain curve for the constrained boundary conditions (figures 5.3d-5.3f)

is on the other hand more significant. Now, the force curves of the coupled and uncoupled model

are pretty similar and that the difference appears in the moment curve. Apparently the constrained

boundary conditions are forcing the structures to be more in axial tension. The uncoupled model is

unable to show the large influence of the axial straining in the moment curve. As soon as the element

next to the triple point starts to yield the moment curve of the coupled model starts unloading, while

the moment curve of the uncoupled model keeps on loading until it reaches Mp where it starts to

yield. Since the moments and curvatures in figure 5.3e are not so small the difference in the overall

behaviour is also larger.

However, in all the simulations for the scaling relationships the unit cell with the free boundary

conditions is used, where the coupled and the uncoupled model are almost similar.

We also can take a closer look on how plasticity evolves throughout the upper strut in the unit cell.

In figure 5.4 and figure 5.5 the stress strain curves, stress profiles for the element next to the triple

point and the development of plasticity are shown respectively for the free and constrained boundary

conditions. The results in these figures are with coupling.

1

2

3

4

ε∗

σ∗

σ∗pl

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

(a) The stress strain curve.
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(b) The stress profiles for the element next to the triple point.
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(c) The development of plasticity throughout the strut.

Figure 5.4: The development of plasticity in a unit cell with linear hardening and free boundary conditions.
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5.1. LINEAR HARDENING

In figure 5.4a the indicated points correspond to the numbers in figure 5.4b. The linestyles of figure

5.4b and figure 5.4c also do correspond. The lines in figure 5.4c mark the boundary between the

elastic and plastic portions of the upper strut of the unit cell. The upper lines mark the boundary ζ⊕

and the lower lines mark the boundary ζ⊕ (the reader is referred to chapter 2 for an explanation of

these boundaries).

The stress profiles are nearly symmetrical, the neutral fiber is very close to the middle of the beam

element (where y = 0). After the initial yielding of the element next to the triple point the stress

strain curve stays linear for a while, because the behaviour is stil dominated by the larger elastic

core. In the beginning the plasticity evolves laterally, but after a while it spreads to the center.

However, there always remains a elastic core, even for the element next to the triple point. When

point 4 is reached 50%-60% of the beam elements have started yielding and 40%-50% of the volume

of the strut has become plastic.

The constrained case (figure 5.5) on the other hand looks very different. The stresses are an order of

magnitude higher and the beam elements are always in tension (figure 5.5c only shows the boundary

ζ⊖). This is consistent with the results shown for the constrained boundary conditions for the

coupling comparison. The way of loading for these boundary conditions is very much alike axial

tension. Plasticity starts spreading from the bottom and quickly spreads from there to the top of the

strut. At the top left of the strut a small parts remains to be elastic for a short while, but soon after

that the complete strut becomes plastic. At a strain of ε∗ ∼= 0.035 there is a small slope change in

the stress strain curve. Because of the high stress levels the beam elements of the lower strut of the

unit cell also have started yielding. All of these elements yield at the same moment and this changes

the slope of the stress strain curve.

Figures 5.4c and 5.5c display for different increments in the same picture the boundary between the

elastic and plastic regions. Another way to visualize the stress profiles of all the elements in the strut

is showing the stress levels for one increment with a stress map. One can find these stress maps in

the appendix.
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Figure 5.5: The development of plasticity in a unit cell with linear hardening and constrained boundary

conditions.
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Figure 5.6: Deflection of a cell wall in a hexagonal honeycomb structure.

5.1.2 Scaling relationships for regular hexagonal honeycombs

In [1] several scaling relations between foam properties and solid material properties are derived.

For example, the relationship between the plastic collapse strength of the foam ((σ∗pl)1 or (σ∗pl)2,

depending on the loading direction) and the solid material (σys) for regular hexagonal honeycombs

with walls of uniform thickness is

(σ∗pl)1

σys
=

(σ∗pl)2

σys
= C1

(t

l

)2

, (5.1)

where C1 = 2/3 is a constant. Another relationship for regular hexagons with walls of uniform

thickness is
E∗1
Es

=
E∗2
Es

= C2

(t

l

)3

, (5.2)

which relates Young’s modulus of the foam (E∗1 or E∗2 , depending on the loading direction) to

Young’s modulus of the solid material (Es). C2 = 2.3 and again is a constant.

Making use of these equations a relationship between the plastic modulus of the foam (H∗) and the

solid material (Hs) is derived.

The deflection of a cell wall in a regular hexagonal honeycomb structure has an elastic and a plastic

contribution:

δ = δel +δpl. (5.3)

A cell wall deflects elastically, according to standard beam theory, by [1]

δel =
Pl3 sinθ

12EsI
, (5.4)
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5.1. LINEAR HARDENING

where P = σ∗1 (1+ sinθ)lb and I = 1
12

bt3. Plastic deflection takes the form

δpl =
l4b(σ∗1 −σ∗pl)(1+ sinθ)sinθ

Hst3
. (5.5)

When equation (5.5) and (5.4) are combined, equation (5.3) becomes

δ = l(1+ sinθ)sinθ
σ∗1 η +σ∗1 −σ∗pl

Hs

(

l

t

)3

, (5.6)

where η = Hs/Es. Now, ε∗1 can be calculated:

ε∗1 =
sinθ

l cosθ
δ =

1

C2

σ∗1 η +σ∗1 −σ∗pl

Hs

(

l

t

)3

. (5.7)

Making use of equation (5.1) and (5.2) one can derive the relationship for the plastic modulus:

H∗1
Hs

=
H∗2
Hs

=
1

Hs

σ∗1 −σ∗pl

ε∗1 − ε∗el

=
C2

1+η

(t

l

)3

. (5.8)

Although, equation (5.7) will look different for an arbitrary angle θ , for regular honecyombs (θ =
30◦) relationship (5.8) looks the same in the 1- and 2-direction.

Results

For relative densities from 4% up to 24% tension and compression tests for a unit cell were simu-

lated. To investigate the impact of the geometry or finite strain effects two sets of simulations were

performed. In one set of simulations the geometry has been frozen, where as in the second set the
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(a) Plastic slope of H = 5 GPa
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(b) Perfect plasticity (H = 0 Pa)

Figure 5.7: Overview of the linear hardening results for the unit cell. The different colors refer to the rel-

ative density percentages, which can be found in the legend. Furthermore, the solid lines are tension

and compression curves for fixed geometry. These curves fall on top of each other and are therefore

indistinguishable. The dashed lines and dash-dotted lines are respectively the tension curves and the

compression curves for updated geometry.
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Figure 5.8: Scaling of Young’s modulus and the plastic collapse strength. The numbers next to the curves in

these figures indicate the power of the function and correspond to the powers in relations (5.1) and (5.2).

Only the results for the tension simulations with updated geometry are presented here, since the fixed

geometry results and the compression results for an updated geometry produce nearly the same curves

and powers.

geometry has been updated. From now on the set of calculations with frozen geometry will be re-

ferred to as “fixed geometry” simulations and those with finite strain effects included will be called

“updated geometry” simulations. The curves can be found in figure 5.7a.

In figure 5.7b one can find similar results as in figure 5.7a, but now the plastic modulus of the solid

material is set to Hs = 0 Pa. This figure only represents change in the plastic slope due to geometry

hardening. The material hardening is ruled out. This data will be used later on.

First we check if our model complies with the scaling relationships for Young’s modulus and the

plastic collapse strength, respectively equation (5.1) and (5.2). These foam parameters are extracted
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Figure 5.9: Change in slope of the stress strain curves for relative densities 4%-12%. The blue lines are for

updated geometry in tension, the green lines are for fixed geometry in tension and the red lines are for

updated geometry in compression.
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Figure 5.10: Change in slope of the stress strain curves for relative densities 16%-24%. The line colors are

similar as in figure 5.9.

from the data in figure 5.7a. The yield stress is the 0.2% offset stress and the Young’s modulus is

the slope of the initial elastic range. We check if the powers of our simulations correspond to the

powers in the previously mentioned theoretical relationships. The powers plotted next to the curves

in figure 5.8a and 5.8b agree with the powers of the theoretical relationships. We also can look at

the constants C1 and C2 respectively in equations (5.1) and (5.2). It turns out that for the simulations

C1 = 1.17 and C2 = 2.78, where theory states that C1 = 2/3 and C2 = 4/
√

3(= 2.3). Although there

is an error the values still agree roughly with theory.

In order to check if the relationship in equation (5.8) agrees with the simulations, the power of this

equation is compared to the theoretical value. To determine the value of the plastic modulus H∗ the

slopes in figure 5.7a are calculated. One can find these in figure 5.9 and 5.10. Normally these curves

H∗
Hs

ρ ∗/ρs

← 2.97
← 2.76

← 3.02

T SS

T FS

C FS

10−2 10−1 100
10−3

10−2

10−1

100

Figure 5.11: Scaling of H
∗ for the unit cell. The solid line represents tension (and compression which

appears to be the same) for fixed geometry, the dashed line represents tension for updated geometry

and the dashed-dotted line represents compression for updated geometry.
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Figure 5.12: Reconstruction of the stress strain curve of the unit cell for linear hardening. This plot only

shows a relative density of 16%. All the solid lines are the results of simulations in tension. A description

of the simulation is stated next to each curve. The dashed line is an attempt to reconstruct the updated

geometry curve with material hardening. There is a clear difference between the reconstructed and the

actual curve.

would look really rough, because the stress strain curves never are completely smooth. Therefore, a

smoothening algorithm is used to get rid of this roughness. Ultimately, to obtain the plastic modulus

H∗, the minimum value of the slop curve is taken.

Now that we have the slope curves we can determine the plastic moduli for the different densities

and conditions and see if their power matches the power in relation (5.8). The plastic moduli which

were found are plotted on a double logarithmic scale in figure 5.11. The powers of the curves are

indicated next to each curve.

What one would expect in figure 5.11 is that the tension curve for updated geometry scales according

to the scaling relation in equation (5.8) so that all the curves scale with a power of three. This turns

out not to be the case for the tension test with updated geometry. The two other curves seem to agree

with the expected power. Now the question arrises what could be the reason for this difference? To

be able to answer this question the difference between the dashed and the solid curves in figure 5.7a

needs to be understood. For this we go back to figure 5.7b where the plastic modulus of the solid

material is set to zero. In other words, the material hardening is ruled out in this picture. The only

difference between the dashed lines (updated geometry) and the solid lines (fixed geometry) is the

influence of geometry. The difference between the solid lines (for the same colour) in figure 5.7a

and 5.7b will be called the difference due to material hardening.

An attempt is made to reconstruct the actual updated geometry curves with material hardening,

building it up from material hardening and geometrical hardening. This is done for one relative

density in tension in figure 5.12. The solid lines in this figure represent actual simulation results,

only the dashed line is a reconstructed curve. This reconstructed curve is the accumulation of
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three parts: The curve for fixed geometry and perfect plasticity (for simplicity reasons this will

be called the base curve), the difference between the curve for updated geometry combined with

perfect plasticity and the base curves (geometrical hardening) and the difference between the curve

for fixed geometry combined with material hardening and the base curve (material hardening).

If material hardening and geometrical hardening where indepedent effects the reconstructed curve

should fall on top of the curve for updated geometry combined with material hardening. This, how-

ever, is not the case. There is still a significant gap between the reconstructed curve and the actual

curve. Apparently, if these two kinds of hardening are combined they will make each other stronger,

in other words there is a synergy between geometrical and material hardening.

The same effect is observed for the compression tests. Only here the difference between the recon-

structed curve and actual curve is negative. This difference is smaller than the difference for the

tension simulations. This can explain the larger differences for tension in the power for the scaling

relationship H∗/Hs than compression. See figure 5.13 for reconstructed curve in compression.

perfect plasticity, updated geometry

material hardening, updated geometry

material hardening, fixed geometry

perfect plasticity, fixed geometry
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Figure 5.13: Reconstruction of the stress strain curve of the unit cell for linear hardening in compression.

The linestyles and density are analogous to figure 5.12.
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5.1.3 Scaling relationships for converged Voronoi networks

The same relationships from the previous section will be discussed for a converged Voronoi network.

In chapter 4 we concluded that the 16×20 cells Voronoi network has reached convergence, so this

sample size is used for the simulations. The applied boundary conditions for voronoi networks also

were discussed in this chapter and are chosen accordingly.

In figure 5.14 the stress strain curves are plotted for a converged Voronoi network. The tension

curves for updated geometry and for fixed geometry are comparable to their corresponding curves

in figure 5.7a. However, as a result of the formation of bands of collapsed cells the compression

curve’s slope for updated geometry goes to zero and even becomes negative. It is not appropiate

to consider hardening relations with interfering behaviour like this. Therefore, the analysis of the

plastic modulus for the compression curves in updated geometry for Voronoi networks is omitted.

The foam to material relationships for Young’s modulus and the plastic collapse strength are checked.

The log-log plots showing the power of the curves varying relative density are shown in figure 5.15a

and 5.15b. The power of the collapse strength agrees with the theoretical expected value of two for

regular hexagons. This does not hold for Young’s modulus, where one would expect a power of 3.

The actual power is somewhat lower, namely 2.87. Although, a converged Voronoi sample is used

there still is an error in Young’s modulus and the plastic collapse stress as illustrated in figure 4.4a

and 4.4b. Simulations on more different realizations are needed to prove this.

Also now the scaling relationship of the plastic modulus is studied. The same methods used for

the unit cell to obtain the modulus are used for the foam. H∗ is the minimum of the differentiated

stress strain curves with respect to strain. The result can be seen in figure 5.16. Please note that now

also the power of the fixed geometry simulations differs significantly from the theoretical expected

value. As mentioned before there is an error in the results of the Voronoi networks, which might be

the cause for this.

As was observed for unit cell it also seems to be the case for the Voronoi network that the plastic

σ∗

σys

ε∗

4
8
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(a) Fixed geometry (solid lines) and updated geometry (dashed
lines) curves with linear hardening.
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(b) Fixed geometry (solid lines) and updated geometry (dashed
lines) curves with perfecy plasticity.

Figure 5.14: Stress strain curves of a 16× 20 Voronoi network in tension with bilinear solid material input

curves. The solid lines represent the simulation results for fixed geometry. Here, the compression and

the tension curve fall on top of each other and are therefore indistinguishable. The dashed line is for

updated geometry in tension. The different colors refer to relative density (in percentages), which is

found in the legend.
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(a) Scaling of Young’s modulus.
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(b) Scaling of the plastic collapse stress.

Figure 5.15: Scaling of Young’s modulus and the plastic collapse strength. The numbers next to the curves

in these figures indicate the power of the function and correspond to the powers in relations (5.1) and

(5.2). Only the results for the tension simulations with updated geometry are shown here, since the fixed

geometry results and the compression results for updated geometry produce nearly the same curves

and powers.

modulus differs from the theoretical expected value. A similar reconstruction as in figure 5.12 is

performed and its results are shown in figure 5.17. The relative differences in this figure are larger,

but apart from that it looks quite similar to the reconstruction curves for the regular hexagons.

Especially the influence of geometrical hardening seems much larger. This is easily understood

since now is being dealt with a much more geometry dominated structure where there are practicly

no symmetries. This greater influence combined with the error on the stress strain curves due

to the random nature of voronoi networks might be an explanation for the unexpected values of

H∗

Hs

ρ∗/ρs

←2.68

←2.40

10−2 10−1 100
10−4

10−3

10−2

10−1

Figure 5.16: Scaling of the plastic modulus for a Voronoi network. The solid line represents ten-

sion/compression for fixed geometry, the dashed line represents updated geometry in tension.
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perfect plasticity, fixed geometry
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Figure 5.17: Synergy of material and geometrical hardening in the Voronoi network. This figure is con-

structed analogous to figure 5.12. Again we note that σ∗pl = 2/3σys(ρ
∗/ρs)

2, however the foam does not

yield at σ∗ = σ∗pl . See the text for an explanation.

the powers of the scaling relationships of the plastic modulus. It should also be noted that the

boundary conditions of single struts in a foam are very different from the free boundary conditions

described earlier in this chapter for the unit cell. The real boundary conditions will be some sort

of combination of the constrained and the free boundary conditions from the unit cell. However,

the coupled and uncoupled model are not that similar for the constrained boundary conditions (see

figure 5.3d - 5.3f). The difference is more significant and it will influence the final outcome of the

power.

An additional note has to be made on the stress values in figure 5.17. It turns out that the foam

does not yield at σ∗ = σ∗pl , but at a lower stress (remember that σ∗pl = 2/3σys(ρ
∗/ρs)

2). This is also

seen in literature [13],[14]. For 2D Voronoi networks the yield stress is lower compared to those of

regular hexagonal honeycombs.
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(c) Moment vs curvature for the element next to the triple point.
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(d) Stress strain curve.
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(e) Force vs strain for the element next to the triple point.
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(f) Moment vs curvature for the element next to the triple point.

Figure 5.18: Comparison between unit cell with the coupled model (solid lines) and with the uncoupled

model (dashed lines). Power law hardening. Figures 5.18a-5.18c consider the free boundary conditions,

figures 5.18d-5.18f consider the constrained boundary conditions.
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5.2 Power law hardening

Now the material behaviour is changed to a power law. For the moment it will be written as

σ0(εpl) = σys

(

1+
E

σys
εpl

)ms

, (5.9)

where ms is the (solid material) hardening exponent and εpl represents plastic strains (εpl = ε −
σys/E).

The effect of coupling will be studied for a power law hardening material and the plasticity devel-

opment in the strut will be analysed and compared for different hardening exponents. For different

relative densities simulations are performed on the unit cell and on 16× 20 Voronoi networks for

different hardening exponents and a fixed yield stress. A fitting method to obtain the hardening ex-

ponent of the foam will be proposed and described. Finally, the scaling of the hardening exponent

of the foam (m∗) versus the hardening exponent of the solid material (ms) will be investigated and

discussed.

5.2.1 Deformation of a strut in an hexagonal unit cell

In figure 5.18 on page 42 the coupled and uncoupled model are compared for the unit cell with two

boundary conditions (free and constrained). The difference occurs in similar places if the figure is

compared to figure 5.3. The stress levels are a bit lower because for power law hardening the solid

material’s rate of hardening is low at larger material strains. Since all of the simulations concerned

with power law hardening are performed with the coupled model, we do not have to worry about

the differences (and possible errors) between the coupled and uncoupled model for the constrained

boundary conditions. Figure 5.18 is shown for completeness. From now on all the results will be

with the coupled model.
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Figure 5.19: Development of plasticity for power law hardening and free boundary conditions.
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Figure 5.20: Development of plasticity for power law hardening and constrained boundary conditions.

Continuing on similar lines as for linear hardening the stress profiles and development of plasticity

are shown for the upper strut in the unit cell. The stress levels are a bit lower than for linear

hardening, but apart from this the pictures look similar to those with linear hardening. See figure

5.19 for the case with the free boundary conditions and figure 5.20 for the case with the constrained

boundary conditions. In the appendix one can find the stress profiles within the upper strut for the

corresponding increments selected from the simulations.

It will be more interesting to see the effect of the hardening exponent at a strut level. This will be

done in a quantitative manner in the next section by comparing the input hardening exponent of

the material (ms) with the hardening exponent of the foam (m∗). In this section only the influence

of hardening on the development of the stress profiles and plasticity is studied. For the unit cell

simulations with fixed geometry and updated geometry conditions were performed using different
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Figure 5.21: Solid material stress strain curves with different hardening exponents (see the numbers in the

plot) and with a fixed yield stress (σys = 150MPa).
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(d) ms = 0.3

Figure 5.22: Stress strain curves for the unit cell with finite strain, different hardening exponents and a fixed

yield stress.

hardening exponents for the solid material (see figure 5.21 for the input curves). The free boundary

conditions are used.

Figure 5.22 shows the stress strain curves of the unit cell with different solid material hardening

behaviour (shown in figure 5.21). The perfect plasticity case clearly shows a slope discontinuity.

This is where the plasticity localizes in the elements close to the triple point. After this slope

discontinuity the curves keeps slowly increasing. This does not happen for the fixed geometry case

where the lines continues to be straight at the same stress level. The trends in the other curves (figure

5.22b - 5.22d) correspond to their input curves. A higher hardening exponent ms will result in more

hardening and higher stress values for the unit cell.

The stress profiles of the element next to the triple point in the upper strut are shown in figure 5.23.

The numbers in the legend in figure 5.23c correspond to the inidicated points in the stress strain

curves in figure 5.22. When the hardening exponent increases the stress profiles reach higher stress

levels at their outer (plastic) fibers for the same applied strain. This is expected since these curves

are directly related to the solid material behaviour.

In figure 5.24 one will find the development of plasticity for the upper strut of the unit cell for

different hardening exponents. Figure 5.24a shows the case for perfect plasticity. After a short
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Figure 5.23: Stress profiles for the unit cell with updated geometry, different hardening exponents and a

fixed yield stress.

period of lateral spreading, plasticity localizes in the elements close to the triple point and keeps on

spreading - although very slow - further along the beam. It clearly shows the formation of a hinge

next to the triple point. For the last printed increments the elastic core hase almost vanished and has

become unobservable in this figure. This clearly is different for figures 5.24b - 5.24d, where it is

not so obvious that plasticity localizes in a few elements next to triple point. Plasticity does spread

inwards for the elements next to the triple point, but this also happens for many more elements

along the strut. The more the hardening exponent is increased the further plasticity spreads along

the strut and inwards the beam elements. For the perfect plastic case only a small percentage of the
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Figure 5.24: Spread of plasticity throughout the beam of the unit cell with finite strain, different hardening

exponents and a fixed yield stress.

46



5.2. POWER LAW HARDENING

area has become plastic for the final increment, but for the case where ms = 0.3 almost 75% of the

beam elements has started yielding. The last three cases are clearly not hinging, they look more like

bending structures.

5.2.2 Scaling relationships for regular hexagonal honeycombs

This and the next subsection will deal with the fitting and comparison of the hardening exponent of

the foam and the solid material. For input the same curves as in the previous section are used. The

reader is referred to figure 5.21. It also was mentioned in the previous section that the difference

between the curves for a fixed geometry and an updated geometry is small for regular hexagons. In

figure 5.25 this indeed turns out to be the case.

The next step is to fit our hardening relation (equation (5.9)) to the stress strain curves of the unit

cell and compare its hardening exponent with the solid material hardening exponent.

A nice property of equation (5.9) is that it can be rewritten to

σ0(ε) = σ1−m
ys Emεm, (5.10)

which is a function of total strain ε instead of plastic strain εpl . To make a proper fit of the plastic

part of our curve, first the elastic part needs to be excluded. This is achieved by drawing a line

parallel to the elastic part of the curve with a small (positive) offset. The initial point of yielding

lies on the intersection of these curves. By doing this we obtain the point where the curve starts to

deviate from the elastic curve and which also is the end point of the elastic range1.

Young’s modulus is easily obtained since it is the slope of the elastic range. The yield stress is also

obtained prior to the fitting. How this is done will be explained later on. The nice property of this

hardening relation is that the fitting only depends on the hardening exponent m.

In principal Young’s modulus and yield stress should be filtered out when fitting by this procedure,

but unfortunately there still is some bias when fitting for different relative densities. Therefore, for

1This method is analogous to the .2% offset method, however here the offset is taken very small.
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Figure 5.25: Stress strain curves of the unit cell for the different input hardening exponents (see the numbers

in the figure next to the curves) for updated geometry (solid lines) and fixed geometry (dashed lines).

These curves are for the relative density of ρ∗/ρs = 12%.
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Figure 5.26: Hardening exponents versus relative densitiy for different input hardening exponents. The

corresponding hardening exponent of the foam is mentioned in the graph near the curves. The solid

curves have ms = 0.1, the dashed curves have ms = 0.2 and the dashed-dotted curves have ms = 0.3.

all relative densities the curves are scaled such that the initial point of yielding falls on (σ∗)′= 1 and

(ε∗)′ = 1. This can be achieved when for each density (σ∗)′ = σ∗/σ∗pl and (ε∗)′ = ε∗/ε∗pl . Another

difficulty is that the input function which is used for fitting has a slope discontinuity. This slope

discontinuity can clearly be seen in figure 5.21 on the point where the material starts to yield. Al-

though the elastic range is ignored for fitting the fitting function cannot take into account the smooth

transition between the elastic and plastic part of the stress strain curve of the foam. To be able to

make a correct fit a small range after the initial point of yielding should also be ignored. Finally, the

simulation with an updated geometry starts to harden more at larger strains. This happens because

the struts in the foam start to align, which make the foam stronger. Obviously this effect needs to

be ignored. The solution is to take different fitting ranges for different densities keeping the lower

and upper bounds of the ranges very close (in a low relative density foam struts tend to align sooner

than in a high relative density foam).

Figure 5.26 shows the hardening exponents of the unit cell versus relative density for the situation

with fixed geometry and the situation with updated geometry. The foam’s hardening exponents for

fixed geometry clearly match the material’s hardening exponents with a small error. Furthermore,

they are independent of the relative density. When the geometry is updated during the simulation,

there appears a dependency on the relative density. Also it is evident that the foam’s hardening

exponent (m∗) is not equal to its solid material’s exponent (ms) anymore.

5.2.3 Scaling relationships for converged Voronoi networks

The same study is performed for Voronoi networks. Networks of 16× 20 cells are used with

the boundary conditions mentioned in the previous chapter. The results for one relative density

(ρ∗/ρs = 12%) are shown in figure 5.27. Please observe the greater relative difference between the

fixed geometry and the updated geometry curves compared to figure 5.25.

Looking at figure 5.28 one observes the same trend as for the unit cells. For fixed geometry the

hardening exponent matches the solid material’s hardening exponent and is independent of density.
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Figure 5.27: Stress strain curves of Voronoi network for different input hardening exponents (the numbers

in legend are the hardening exponents.) for finite strains (solid lines) and small strains (dashed lines).

These curves only are for the relative density of ρ∗/ρs = 12%

For updated geometry the foam’s hardening exponent does not match the solid material’s exponent

and the difference is even larger than for the unit cell. It also is dependent on relative density.

Why the fixed geometry’s hardening exponents match those of the solid material can be understood.

For a fixed geometry the realization will remain in its original configuration. All the angles, node

positions and beam lengths will remain the same. For the case of the unit cell an applied displace-

ment in the top node will result in a distribution of the axial strain and the curvature depending

on the angle. Since the configuration remains constant, the overall force is just the redistributed

value of the original material behaviour. Their structure exists of course out a lot of elements which

make the calculations of the force more complicated, but if the geometry remains fixed it is just

a distribution which remains the same if the geometry remains the same. The final outcome may

differ, but the trends observed in this will match the trends of the material behaviour, including the
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Figure 5.28: Hardening exponents of a Voronoi network versus relative density for different input hardening

exponents. The curve with triangle shaped points has an input exponent of ms = 0.1, the curve with

square shaped points ms = 0.2 and the curves with diamond shaped points ms = 0.3.
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hardening exponent. This argument also holds for the Voronoi networks. The distribution is simply

more complex, but for a fixed geometry the trend of the curve is unchanged.

5.2.4 Strain maps for different hardening exponents

With the strain mapping method described in chapter 3 strain maps for different hardening exponents

in tension and compression are produced to analyse the effect of hardening on the distribution of

strain.

Figure 5.30 on page 52 shows strain maps for tension for perfect plasticity, ms = 0.1 and ms = 0.2. In

figure 5.31 on page 53 strain maps for compression for the same solid material hardening exponents

are shown. The numbers mentioned with each strain map correspond to the indicated points in

figure 5.29a for tension and figure 5.29b for compression.

On average the strain maps in tension are the same for comparable strains. Taking a closer look

reveals some more localization for the perfect plastic case. Compare for example figure 5.30b with

figure 5.30e. The strain map for perfect plasticity shows more localization than the strain map with

ms = 0.1. The strain values in the regions where strain localized for the perfect plastic strain map

are comparable with the values in the same regions of the strain map with ms = 0.1. Even when the

overall strain value of perfect plastic strain map is lower than the one with ms = 0.1. However, the

effect is still very small. Changing the solid material’s hardening exponent does not significantly

affect the strain distribution when a Voronoi network is loaded in tension.

If a voronoi network is loaded in compression the results are very different. For perfect plasticity

a clear band is forming and almost all the displacement takes place in this band. For larger strains

displacements also seems to occur in a second band at a different angle. In the strain maps with ms =
0.1 strain again takes place in the same band as the strain maps for perfect plasticity. Now, however,

the strain values are smaller and straining spreads throughout the structure, it is not localized around

one of the bands as observed for perfect plasticity. Increasing the hardening exponent of the solid

material results in even more spreading of strain, which is shown in the strain maps for ms = 0.2.
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Figure 5.29: Stress strain curves of a Voronoi network for different hardening exponents. The solid lines

correspond to the Voronoi with a perfect plastic material, the dashed lines are with material with ms = 0.1
and the dashed-dotted lines are with ms = 0.2
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Thus, decreasing the hardening exponent of the solid material will result in more localized strain

in a Voronoi network loaded under compression. A lower ms results in a structure where hinge

formation in struts is more common (this is shown in detail in section 5.2.1). If hinge formation is

more likely, defects in the Voronoi network are also more likely to reveal themself which results in

the collapsing of cells. Once this is happening strain is more likely to localize around these defects

unloading the rest of the structure.
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(a) Perfect plasticity, 1 (b) Perfect plasticity, 2 (c) Perfect plasticity, 3

(d) ms = 0.1, 1 (e) ms = 0.1, 2 (f) ms = 0.1, 3

(g) ms = 0.2, 1 (h) ms = 0.2, 2 (i) ms = 0.2, 3

E PS 22

0.18

0.16

0.14
0.12

0.1

0.08

0.06
0.04

0.02

0

Figure 5.30: Strain maps in tension for different solid material hardening exponents.
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(a) Perfect plasticity, 1 (b) Perfect plasticity, 2 (c) Perfect plasticity, 3

(d) ms = 0.1, 1 (e) ms = 0.1, 2 (f) ms = 0.1, 3

(g) ms = 0.2, 1 (h) ms = 0.2, 2 (i) ms = 0.2, 3
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Figure 5.31: Strain maps in compression for different solid material hardening exponents.
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5.3 Non-uniform cross-section

For the non-uniform cross-section a strut profile given by equation (5.11) is used. The advantage

of this function is, that it always will give the same area for any relative thickness (trel), making it

suitable for comparison between different relative thicknesses. This relative thickness determines

the non-uniformity of the cross-section. If trel = 1.0 it will lead to a uniform cross-section along the

strut. A value of trel < 1.0 will results in a concave cell wall shape, trel > 1.0 will results in a convex

cell wall shape [11].

t(ξ ) = t0

[

3(1− trel)

(

ξ

l

)2

+ trel

]

(5.11)

Figure 5.32 shows a cell wall shape for trel < 1.0.

ξ

t(ξ )t0

−l l

Figure 5.32: A schematic of the non-uniform cross-section keeping the area the same as for a uniform cross

section with thickness t0.

Now, results for the unit cell with a non-uniform cross-section (NUCS) are shown. The same strut

deformation analysis which was done for the unit cell with uniform cross-section (UCS) will be

performed for the NUCS. For the NUCS a relative thickness of trel = 0.7 was used. Figure 5.33

shows the stress strain curves in comparison to those of the UCS. The indicated points in these curve

correspond to the moments during the simulations where the stress profiles were taken. Figure 5.34

shows the stress profiles at the point of action, where plasticity occurs first and has a maximum

depth of plasticity penetration at all the times (indicated with a vertical line in the development of

plasticity plots in figure 5.35). Figure 5.35 shows the development of plasticity throughout the upper

strut of the unit cell. The bottom curves for the case with free boundary conditions are ζ⊖, the top

curves ζ⊕. When the constrained boundary conditions are applied one only observes ζ⊖.

The NUCS structures with free boundary conditions appear to be much stronger than the UCS

structures. As was stated before, the unit cell (with free boundary conditions) is a bending structure.

It will try to bend near the tripple point. Here, however, the strut is the thickest in this place. It is

unlikely to bend at this location. As Figure 5.35 will point out, the majority of the plasticity takes

place in the middle of the strut. Here it will be less hard to bend since the strut is less thick here

(about the same thickness as the UCS), but it also will be more difficult to deform the structure since

it is further away from the triple point. The NUCS cases with the constrained boundary conditions

on the other hand are weaker than UCS structures. Since the upper strut of the unit cell with these

boundary conditions is for the majority under tension it depends on the weakest elements in the

strut. In this case these are the thinnest elements in the upper strut of the unit cell, which are clearly

not so strong as the elements in UCS’s struts, which all have the same (and compared to the NUCS’s

thinnest elements larger) thickness.
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(a) Free boundary conditions, linear hardening
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(b) Free boundary conditions, power law hardening
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(c) Constrained boundary conditions, linear hardening
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(d) Constrained boundary conditions, power law hardening

Figure 5.33: Comparison between unit cell with cell walls which have a uniform cross-section (solid lines) and

cell walls with a non-uniform cross-section (dashed lines). The indicates points in each curve correspond

to a linestyle in figures 5.34 and 5.35. 1 corresponds to the solid lines, 2 to the dashed lines, 3 to the

dotted lines and 4 to the dashed-dotted lines in figures 5.34 and 5.35.
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Figure 5.34: Stress profiles of the unit cell with non-uniform cross-section.
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Figure 5.35: Spread of plasticity in the upper strut of the unit cell with non-uniform cross-section.
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6
Heat treatments

As mentioned in the introduction heat treatments can significantly change the mechanical properties

of the solid material an therefore of the foam. Thus, a more detailed look into the effects caused by

these treatments is desirable.

The differences between T6-strengthened (T6) and annealed (O) foams have their origin in the mi-

crostructure. T6-strengthened material has a significantly different grain structure when compared

to annealed materials. In this chapter the differences between the two heat treatments are incorpo-

rated by adjusting the material parameters such as the yield strength and the hardening exponent.

6.1 Definition of the heat treatments
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Figure 6.1: Diagram explaining the used heat treatments, T6-strengthening (T6) and annealing (O).

Two heat treatments used by industry have been chosen to use as input for the simulations. In figure

6.1 the definition of the two used heat treatments - T6 and O - is explained.
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(a) Experimental stress strain curves of the solid material for the
different heat treatments.
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(b) Fitted stress strain curves of the solid material for the
different heat treatments.

Figure 6.2: Experimental and fitted stress strain curves in tension for two solid materials subjected to different

heat treatments. The solid curve is a fit for a the T6 material, the dashed curve for the O material. The

point where a curve stops indicates the failure stress.

During the T6-strengthening process the foam is first solutionized at 527◦C for 8 hours, after which

it is quenched in water to room temperature. After this the foam is aged at 177◦C for another 8

hours. The annealing proces involves soaking at 412◦C for 3 hours followed by a two-step furnace

cooling to room temperature [7].

These heat treatments significantly change the mechanical properties of the foam. T6-strengthened

solid material will have a higher yield stress, but the failure strain will be lower than the failure

strain of an annealed material. There also is a significant difference in the hardening. The hardening

exponent of an annealed material will be higher than the hardening exponent of a T6-strengthened

material. In figure 6.2 one can find the stress strain curves of two solid materials from which each

was subjected to one of the heat treatments.

The function σ0 = σys(1+Es/σysεpl)
ms is fitted as good as possible to the experimental curves. The

parameters of these fittings can be found in table 6.1.

heat treatment σys(MPa) ms σ f (MPa)

O 41 0.169 105

T6 191 0.049 220

Table 6.1: Parameters belonging to the curves in figure 6.2b
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Figure 6.3: Stress strain curves for the unit cell with T6 and O heat treatment for updated geometry and a

relative density of ρ∗/ρs = 10%.

6.2 Regular hexagonal honeycombs

Now that the model is fitted to experimental data, the parameters from the fit are used for the

simulations. Similar to the unit cell in the previous chapter a strut deformation study is conducted.

These studies are only performed for the free boundary conditions. After this we shall also compare

the hardening exponent of the solid material with the foam’s hardening exponent for the two heat

treatments.

6.2.1 Deformation of a strut in an hexagonal unitcell

Figure 6.3 shows the stress strain curves for the two heat treatments for updated geometry and a

relative density of ρ∗/ρs = 10%. The different hardening exponents of the two heat treatments are

reflected in the foam. Also here the indicated points in figure 6.3 correspond to the numbers in

figure 6.4 and the linestyle in figure 6.4 correspond to the linestyle in figure 6.5.

Looking at the stress profiles and development of plasticity plots in the upper strut reveals that T6

tends to behave like a perfect plastic material. Especially when only looking to the stress profiles,
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Figure 6.4: Stress profiles for the unit cell with T6 and O heat treatment.
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Figure 6.5: Spread of plasticity throughout the upper strut of the unit cell with T6 and O heat treatment.

which have close resemblence with figure 5.23a. It is exaggerated to say that T6 is a perfect plastic

material, because there still is a larger number of elements becoming plastic compared to a perfect

plastic material. But there is a clear hinge forming close the triple point and one has to conclude

that the plasticity is localizing around this hinge.

This is clearly not the case for the O results. Figures 6.3b and 6.4b show a clear hardening trend

and in figure 6.5b the hardening is not localizing close to the triple point but spreading throughout

the strut.

6.2.2 Hardening

Subsequently the same study done for hardening exponents in section 5.2.2 is done for the different

heat treatments. Stress strain curves for one relative density (ρ∗/ρs = 16%), the two heat treat-

ments and fixed and updated geometry are shown in figure 6.6. The hardening exponent versus

relative density for a fixed and an updated geometry are found in figure 6.7. Again, we arrive at the

same conslusion: for fixed geometry the foam’s hardening exponent matches the solid material’s

hardening exponent and is independent of relative density. When the geometry is updated the hard-

ening exponents do not match anymore and the foam’s hardening exponent is dependent on relative

density.
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Figure 6.6: Stress strain curves of the the two heat treatments for fixed geometry (solid lines) and updated

geometry(dashed lines) for the unit cell in tension for a relative density of ρ∗/ρs = 16%.
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Figure 6.7: Hardening exponents versus relative density for different input hardening exponents concerning

the unit cell. The solid lines have an input exponent of ms = 0.049 and the dashed lines ms = 0.169.

6.3 Converged Voronoi networks

The effect of the two heat treatments on the overall behaviour of Voronoi networks is studied in this

section. After analysing tension and compression stress strain curves, the solid material hardening

exponent (ms) is compared to the hardening exponent of the Voronoi networks (m∗). Ultimately, a

preliminary study of failure (it is called preliminary, because there is no unloading after the failure

of a strut) is presented.

6.3.1 Tension versus compression

Simulations for tension and compression were performed for 16× 20 Voronoi networks with dif-

ferent heat treatments. The curves for the tension simulations can be found in figure 6.8a and the

compression curves are in figure 6.8b.

The stress values of the T6 Voronoi in figure 6.8a are higher than the stress strain curves’ stress

values of the O Voronoi in figure 6.8a. This is expected since the yield stress and of T6 is higher

than O. At the end of the T6 curves the foam starts to harden more. This effect is also seen for the

O curves, but here is less prominent. An explanation is the fact that struts will hinge more instead

of bending in a T6 foam. This will lead to a foam where struts align more easily in tension, making

it harden faster and more pronounced.

The compression curves (see figure 6.8b) on the other hand show a completely different behaviour.

After the foam as started to yield it will reach a peak stress, after which it will start to soften. If

we look to strain maps for compression we now observe band formation. These bands appear in the

weakest regions of the foam. Deformation localizes first at one band after which the displacement

will reach a certain limit, the foam will harden again in this band. Then deformation will switch

to another band, which now has become the weakest region. Now, the same process starts all over

again. This mechanism will occur in both heat treatments, however the way it happens differences

for each heat treatment. T6-strengthened foams seem to form bands more easily. As was shown

earlier in this chapter in T6 hinges will form more easily making the formation of bands more
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Figure 6.8: Stress strain curves for T6 (solid lines) and O (dashed lines) Voronoi networks in tension and

compression.

likely. The stress strain curves of a T6 foam for compression have after the peak stress clear hills

and valleys in their curves. These valleys form when the materials softens which corresponds to

the formation of a band. When the stress strain curve starts to harden displacements in the current

band reach a limit and the deformation switches to another band. A hill forms till the displacements

have moved to the other band after it moves to a new band etc. Annealed foams do not show these

hills and valleys. Because of the higher hardening exponent plasticity spreads further throughout

the struts and hinges are less likely to be formed. Hence, making the formation of bands less likely.

6.3.2 Hardening

This study is completely analogous to the study performed in section 5.2.3. See figure 6.9. Also

here the same conclusions hold. For fixed geometry the foam’s hardening exponent matches the

solid material’s hardening exponent and it is independent of relative density. If geometry is updated

the foam’s hardening exponent does not match the solid material hardening exponent anymore. The

difference is between the two hardening exponents is now even larger than for the unit cell and it

also is dependent on relative density.

6.3.3 Failure

With the coupled model described in chapter 2 the exact stress in the top and bottom fibers of each

beam element can be extracted. If one of these stresses exceeds the failure stress mentioned in table

6.1 the element will be set failed. If an element in a strut exceeds this failure stress, the strut also

will be regarded as failed and all other beam elements in this strut will cease to be monitored during

the remainder of the simulation. Note that the stresses are only monitored, there is no feedback to

the simulation when a struts is set as failed, i.e. there is no unloading and the stresses in the beams

and struts can continue to increase. We now define a damage parameter D, which is defined as the

number of failed struts divided by the total number of struts.

Figure 6.10a shows the stress curves of a T6 and O Voronoi for different relative densities. The

relative densities are mentioned inside the figure next to each curve. Also the point of failure for the
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Figure 6.9: m∗ versus relative density for a Voronoi structure of 16×20 cells.

complete structure is indicated in this figure. This point of failure is defined at the moment when

the damage exceeds D = 0.25, which is drawn by dotted in figure 6.10b. This figure shows the

damage curves versus strain for both heat treatments. The fact that the O Voronoi network starts

failing at higher strains but lower stresses than the T6 Voronoi network is in accordance with the

solid material curves shown in figure 6.2. For T6 damage seems to be increasing much faster than

for the annealed curve. As already is pointed out the behaviour of T6’s solid material is much alike

a perfect plastic material. Both materials easily form hinges close to triple points, making the struts

in these material easilier align. When struts are aligned the structure will be more rigid and stresses

will therefore also increase more, causing the damage parameter to increase faster. This aligning

effect does not occur (or at least with a smaller impact) in the O Voronoi network. Also observe the

fact that for higher relative densities the damage increases faster. If the relative density is higher,

the strut thickness will be larger. Thicker struts are more rigid and require more stress to achieve

the same amount of straining compared to a thinner strut. If stresser increase faster, the damage
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Figure 6.10: Stress strain curves and damage curves for a Voronoi network in tension.
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6.3. CONVERGED VORONOI NETWORKS
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Figure 6.11: Failure stress (σ∗f ) and failure strain (ε∗f ) versus relative density for T6 (solid lines) and O

(dashed lines) in log-log scales.

parameter will in its turn also increase faster, as we observe in figure 6.10b.

Finally we will examine the failure stress (σ∗f ) and failure strain (ε∗f ) as a function of relative density.

These results are plotted in figure 6.11 on a log-log scale. For both heat treatmens the failure stress

and failure strain scale with a power to relative density. These powers are indicated next to curves

in the figure. For the failure strain the absolute value of the power is shown. For an elastic material,

we know that the yield stress scales with a power of two and yield strain scales with a power of

minus one. For a foam with an elastic material we can write

[

σ∗pl

σys

]

2

=

[

E∗

Es

]

3

[

ε∗pl

εys

]

−1

, (6.1)

where the subscripts indicate the power of scaling of the ratio between the brackets. If this is

compared to the scaling of the failure stress and strain we see that the total of both powers still is

about three (if we add up the absolute values), however it has shifted to the power of the failure

strain. In the range (in the stress strain curves) where all the failure stresses and strains occur, the

foam is behaving in a elastic-plastic manner. This seems to change the powers in expression (6.1).

Another conclusion we can draw from figure 6.11 is that the T6 Voronoi fails at higher stresses but

lower strains. The exact opposite is the case for the O Voronoi, these Voronoi seem to fail at higher

strains, but lower stresses. When both heat treatments are compared, we conclude that T6 Voronoi

fail in a brittle manner, while the O Voronoi fail in a ductile manner.
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7
Conclusion

In this chapter an overview will be given of the most important conclusions drawn throughout this

thesis. Additionally, a few recommendations are listed aimed at future research in modeling of

aluminum foams.

7.1 Conclusion

• The model used in this thesis is able to capture the gradual plastification of a strut cross-

section and it can do this for different boundary conditions where coupling of axial strains

and curvature is included.

• A postprocessing procedure called ‘strain mapping’ can be used to visualize the strain distri-

bution inside a foam sample.

• At a sample size of 16×20 cells convergence is reached. Convergence in Young’s modulus,

yield stress (in tension) and peak stress (in compression) supports this.

• The coupled and uncoupled model produce nearly the same results for regular hexagonal

honeycombs. For biaxial straining the uncoupled model is not accurate anymore.

• The regular hexagonal honeycombs’ and Voronoi network’s yield stress and Young’s modulus

scale according to the scaling relationships described in literature [1].

• For linear hardening the plastic modulus of regular hexagonal honeycombs and Voronoi net-

works does not scale with the same power as its theoretical relationship. A synergy between

geometrical and material hardening is the cause of this. The error (compared to the theory) is

larger for Voronoi, than for regular hexagons, since Voronoi are significantly more geometry

dominated.
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7.2. RECOMMENDATIONS

• When the geometry of power law hardening foam is frozen, its hardening exponent will match

the hardening exponent of the solid material. When geometry is updated, the hardening ex-

ponent of the foam ceases to match the solid material’s hardening exponent and becomes

dependent on relative density.

• If the hardening exponent of the solid material is high, deformation spreads throughout the

structure. When the hardening exponent is low deformation will localize more.

• When the T6 and O heat treatments are compared, we conclude that T6 Voronoi fails in a

more brittle manner, while the O Voronoi fail in a more ductile manner.

7.2 Recommendations

• A more realistic model of the non-uniform cross-section should be implemented. How does

the non-uniformity affect the behaviour of 2D foams?

• The influence of actual precipitates is not studied yet. By modifying the hardening exponent

and yield stress of the foam, reasonable simulations were performed of T6-strengthened and

annealed foams in this thesis. What will precipitates contribute to this?

• The hardening exponent of the foam depends on material hardening and geometry hardening.

The foam’s hardening exponent will look like

m∗ = ms +mg(ms,ρ
∗/ρs,εys), (7.1)

but how does mg depend on ms, ρ∗/ρs and εys?

• In experiments the majority of bands of collapsed cells are horizontal. Why do bands of

collapsed cells in 2D foams always appear at angle of 60◦ to loading direction?

• All of the results presented here are for 2D foams. How will the conclusions change when the

simulations are performed in 3D?
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Figure 8.1: Stress contour plots at the different points on the stress strain curve for linear hardening and the

free boundary conditions (from top to bottom 1-4).
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Figure 8.2: Stress contour plots at the different points on the stress strain curve for linear hardening and the

constrained boundary conditions (from top to bottom 1-4).
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Figure 8.3: Stress contour plots for power law hardening with free boundary conditions at the different points

on the stress strain curve (from top to bottom 1-4).

71



0.54

0.72 0.72

0.
72

0.9
0.9

0.9

y/t

0 l/l0 1
-0.5

0

0.5

0.54

0.72
0.72

0.9 0.9

0.
9

1.08

y/t

0 l/l0 1
-0.5

0

0.5

1.08

1.26

y/t

0 l/l0 1
-0.5

0

0.5

1.
26

1.44

1.62

1.62

y/t

0 l/l0 1
-0.5

0

0.5
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points on the stress strain curve (from top to bottom 1-4).
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